UUCMS. No.	
B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU – 560004 SEMESTER END EXAMINATION – SEPTEMBER- 2023	
B.Sc. in Mathematics – 4th Semester	
PARTIAL DIFFERENTIAL EQUATIONS AND INTEGRAL TRANSFORMS (NEP Scheme 2021-22 Onwards)	
Course Code: MAT4DSC04	QP Code: 4015
Time: 2 ¹ / ₂ Hours	Max. Marks: 60
Instructions: Answer all the Sections. SECTION-A	
I. Answer any SIX questions:	(2X6=12)
1. Solve $z = px + qy + \sqrt{\frac{pq}{p+q}}$. 2. Form the Partial differential equation for $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. 3. Solve $(D^2 - 2DD' + {D'}^2)z = 0$. 4. Find the particular integral of $(2D^2 - DD' + 3D'^2)z = \sin(4x + y)$. 5. If $L\{f(t)\} = F(s)$, then prove that $L\{e^{at}f(t)\} = F(s - a)$. 6. Find the Laplace Transform of <i>tsint</i> . 7. Find a_n for $f(x) = x + x^2$ in $(-\pi, \pi)$. 8. Obtain the Half range Sine series of $f(x) = x$ in $(0,\pi)$.	
SECTION-B	

II. Answer any FOUR questions:

- 1. Using Lagrange's multipliers solve pcotx + qcoty = cotz.
- 2. Solve $p^2 x + q^2 y = z$

- Solve p x + q y = 2
 Find the complete integral of z²(p² + q² + 1) = 1 by Charpit's method
 Solve (D² 2DD' + D'²)z = x + y.
 Find the solution for One Dimensional Wave equation using Fourier series.
- 6. Solve $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$ subject to the condition i) u(0, t)=0, u(1, t)=0 for all t, ii) $u(x, 0)=x^2 - x$; $0 \le x \le 1$.

SECTION-C

III. Answer any FOUR questions:

1. Find the Laplace transform for the following

(4X6=24)

(4X6=24)

i)
$$f(t) = \frac{\sin at}{t}$$

ii) $f(t) = t^2$, $0 < t < 2$ and $f(t+2) = f(t)$ for $t > 2$.

2. Find the Inverse Laplace Transform of the following

- i) $\frac{s+2}{s^2-2s+5}$ ii) $\log\left(\frac{s+a}{s+b}\right)$. 3. Verify convolution theorem for the functions $f(t) = e^t$ and g(t) = cost.
- 4. Obtain the Fourier series of the function $f(x) = x^2$ in $(-\pi, \pi)$, and hence deduce that $1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$.
- 5. Find the finite Fourier cosine transform of $f(x) = \left(1 \frac{x}{\pi}\right)^2$ in $(0, \pi)$.
- 6. Find the inverse finite Fourier sine and cosine transform of $\frac{\cos(\frac{2n\pi}{3})}{(2n+1)^2}$ where 0 < x < 1.
